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Abstract

This paper describes a method for generating the parameterized design of a complex
dynamical system based on a co-generated controller. The algorithm generates and
evaluates a design based on the volume of state space that can be stabilized by its
associated controller. This volume acts as a conservative metric for the extensibility
of the generated controller and by proxy, the quality of the design. The approach is
motivated specifically by a robotic inspection spacecraft using novel actuators. It ex-
hibits complex behaviors that couple its design and possible controllers. This approach
addresses the weaknesses in traditional techniques when designing high-dimensional
dynamical systems that have actuator saturation and uncontrollable swaths of state-
space coupled with the system’s design parameters. The algorithm takes a mutable,
parameterized design and a controller prototype as input. It probabilistically searches
for the design-controller combination with the best control volume, then outputs a
design and controller. With minimal human intervention, this approach can generate
high-dimensional designs with several parameters that are unsuitable for other design
and controller synthesis methods. We demonstrate the system’s efficacy through two
simulated systems - a double pendulum and an inspection spacecraft.

1 Introduction

The goal of this paper is to introduce a new approach to algorithmic dynamical
system design. Our probabilistic co-generation method uses techniques from
evolutionary design, motion planning, and controller verification to generate
designs and evaluate them on controller coverage. This process results in phys-
ical design parameters and a multi-query controller. These together attempt to
maximize the volume of state-space that the system can explore without becom-
ing unstable. Algorithmically generated designs that can safely reach many goal
states are especially valuable to our motivating system: an inspector spacecraft
using a novel actuation technology Reinhardt & Peck (2015). The inspector
exhibits a confluence of problematic characteristics for traditional co-generation
methods - complex dynamics, multiple goal states, and high dimensionality.
While designed for a specific system, this method is broadly applicable to the
design of systems with similar characteristics.
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Fig. 1: Three views of an electromagnetically actuated inspection spacecraft
that is an ideal target for probabilistic co-generation. Left to right - (1a)
Schematic diagram showing a small set of possible system parameters.
(1b) Conceptual image. (1c) Prototype system showing the conductive
surface and actuators.

1.1 Simultaneous Design and Control

Multi-Query
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Fig. 2: Probabilistic co-generation ad-
dresses high-dimensional, multi-
query systems with complex dy-
namics.

Many systems are full of numeri-
cal design parameters that dominate
their dynamics. These parameters
can be anything from the wing width
of an airplane to the volume of a
chemical tank to the length of a pen-
dulum or the number of joints in an
arm. The resulting dynamic effects
are then unavoidably linked to the
system’s control law. A naive set of
parameters can render the system ef-
fectively useless. Ideally, the system’s
parameters would take its future con-
troller into account to maximize its
whole performance.

System design can be long and in-
volved, so ideally it would leverage in-
creased computing power to expedite
the process and unlock the power of
complex systems. Traditional meth-
ods for designing simple systems close
the loop between the parameters and
controller through a combination of intuition, analysis/tuning, and leveraging
well-studied systems. This process tends to fall apart as the system becomes
more novel or complex - a perfect place for more algorithmic approaches to step
in Yao & Higuchi (1999). As additive manufacturing, laser cutters, and cheap,
multi-use electronics make new and on-the-fly system creation more common,
design techniques need to match these advances Gowdy & a.a. Rizzi (1999).
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Note that many systems don’t need algorithmic design synthesis. Often, the
design of a physical system is determined by external factors - manufacturing
costs and well-understood designs are important considerations. A novel system
is often intuitive or well understood; it may have a few free parameters which
have well-known effects on performance Hurst et al. (2007). However, even in
these cases algorithmic system generation enables a symbiotic pairing between
humans and machines - leaving the humans to do the creative work they are
best at, while the computer takes care of the details.

1.2 Approaches

Different fields have used algorithmic co-generation to design parameters and
controllers across several applications. Chemical engineering uses several tools
to simultaneously generate designs and control laws for large-scale systems
Kookos & Perkins (2001); Ricardez-Sandoval et al. (2010, 2009); Bansal et al.
(2000). Aerospace engineers have applied co-generation to the designs of flexible
spacecraft Hale et al. (1985); Ravichandran et al. (2006); Sobieszczanski-Sobieski
& Haftka (1997) and micro air vehicles before they were drones Kajiwara, I.;
Haftka (1999). The co-generation methods used in aerospace and chemical en-
gineering take a purely optimization-based approach, which can provide explicit
performance guarantees. These guarantees are needed because the systems in
question are often delicate and expensive.

Algorithmic co-generation can be especially useful in robotics, where sys-
tems need to adapt to many situations Ravichandran et al. (2006) and may
be reconfigurable Kotay et al. (1998) or designed on the fly Yim et al. (2007).
Robotic co-generation uses either optimization over the parameterized dynam-
ics or genetic algorithms paired with simulations Auerbach & Bongard (2010);
Hornby et al. (2003).

Each of these systems has trade-offs. Optimization-based methods perform
well in several cases: when the dynamics can be expressed analytically Rastegar
et al. (1999) or when the dynamics are smooth, low dimensional or linear. If a
system doesn’t meet these conditions, the optimization could fail to converge or
require excessive tuning (essentially reverting to hand-design.) Simulation-based
co-generation can handle systems that defy traditional optimization. However,
whereas simulations can demonstrate functionality, they give no guarantees.
Additionally, both optimization and simulation-based methods primarily target
systems with a single goal - whether it be a point in state space or a limit
cycle. Stochastic MPC can provide guarantees and deal with nonlinearities, but
still depends on a single query system and converging dynamics Bahakim &
Ricardez-Sandoval (2014).

Why is yet another approach needed? New technologies enable systems that
fall through the holes in previous methods. For example, the robotic inspection
spacecraft that motivates the probabilistic co-generation approach Reinhardt
& Peck (2014). Unlike a free-flying inspection vehicle Choset et al. (1999), it
uses novel electromagnetic actuators that allow it to grapple surfaces without
mechanical contact. These actuators have advantages, requiring no propellant,
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but a poorly designed controller will send the inspector spinning into space. The
probabilistic co-generation approach can unlock multi-query controllers for an
entire class of systems with nonlinear, high-dimensional dynamics and limited
control authority (figure 2.)

1.3 Building Blocks

Complex systems need tools to tackle several separate problems: generating
designs and multi-controllers for high dimensional and complex dynamics; pro-
viding some guarantees on performance; and evaluating the whole combination.
To do this, the probabilistic co-generation approach draws on work in several
areas: probabilistic path planning, algorithmic control verification, and evolu-
tionary design.

Probabilistic methods like Rapidly-exploring Random Trees (RRTs) LaValle
& Kuffner, J.J. (2001) are a common approach for attacking high dimensional
systems. Several methods have demonstrated how RRTs can control systems
with non-linear dynamics Perez et al. (2012) and non-holonomicKaraman &
Frazzoli (2013). Probabilistic methods combine naturally with planning ap-
proaches that use local controllers to cover state space. These include sequential
potential functions for navigation Conner et al. (2003) and preimage backchain-
ing, which uses sequential control ’funnels’ to drive a system to a goal state
Lozano-Perez et al. (1984); Mason (1985); Burridge et al. (1999).

The controller half of probabilistic co-generation is heavily influenced by
LQR trees Tedrake et al. (2010), which combine sequential stabilizing funnels
with probabilistic methods and numerical verification Tobenkin et al. (2011).
Additionally, LQR trees provide coverage over all (reachable) state space by
finding the regions of attraction for their control gains through SoS verification
Reist & Tedrake (2010). Our approach uses similarly verified coverage as infor-
mation about the state space volume that a controller can drive to a stable goal
state. Like LQR trees, our approach uses Linear Quadratic Regulator (LQR)
control gains Kwakernaak & Sivan (1972) in each individual controller. While
simple, LQR gains can be quickly calculated and extended for control-limited
systems Scokaert & Rawlings (1998).

RRTs in general and LQR trees in particular are single-query approaches
- they drive the system to a single goal state. Single-query planners are good
for a single task or maneuver, but a system that may need to perform several
different tasks needs a multi-query planner. There remain fewer analogs in
dynamical systems for multi-query probabilistic planners like Probabilistic Road
Maps (PRMs) Kavraki et al. (1996); Mitchell et al. (2005) than their single-query
counterparts because many dynamical systems have only a few stable goal states.
Thus, verification and controller generation for multi-query dynamical systems
is an area of active research Majumdar (2012). Following the lead of PRMs, our
approach creates a safe roadmap through state space by connecting stable goal
states with overlapping Region of Attractions (RoAs).

The plethora of possible goal states raise the question of how to evaluate the
controller, because it can’t be judged on driving the system to any single state.
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The number of states it can stabilize provides a different metric. Ideally, this
metric would be the volume of the closed loop system’s reachable set. Many
systems can use the solution to the Hamilton-Jacobi-Bellman (HJB) equation
to find their reachable set Mitchell et al. (2005). Other methods of verification
include ’growing’ reachable cells Conner et al. (2006). However, these methods
are computationally intractable above three or four dimensions which makes
them impractical even for dynamical systems that are unconstrained in three
degrees of freedom.

Instead, our system needs an approximation for the full reachable set. One
possible approximation is the volume covered by the RoAsof each set of con-
trol gains. Input-constrained systems without a clear metric for total energy
defy traditional energy-based Lyapunov functions Koditschek (1989), so our
method needs to generate Lyapunov functions by another path. Sum-of-Squares
(SOS) programming leverages numerical optimization and increased compu-
tational power to algorithmically find a Lyapunov function for a system Pa-
pachristodoulou, Antonis; Prajna (2002). The function’s level sets define a RoA
in state space where the controller can always stabilize the system. These RoA
are often small in strongly nonlinear systems because a single LQR controller is
based on a linearization of the system. One downside of SOS programming is
that it is computationally intensive and scales poorly to high dimensional sys-
tems. However, recent research has shown that Diagonally-dominant Sum-of-
Squares (DSOS) programming and Scaled-Diagonally-dominant Sum-of-Squares
(SDSOS) programming are viable alternatives to SOS programming in high di-
mensions Ahmadi & Parrilo (2014).

In short, complicated systems require creative solutions. Our approach
draws from research in probabilistic path planning, numerical verification, and
simultaneous design and control in several fields. Motivated by a robotic inspec-
tion spacecraft, it simultaneously synthesize designs and controllers for complex
systems.

2 System Description

This probabilistic co-generation method is meant for complex dynamical sys-
tems where other methods fall short. In general, these systems have nonlinear,
state-dependent actuators, a high dimensional state space, and many stable
points. Consider a many-link pendulum with limited actuators at each joint.
The actuators are sufficient to hold the joints in many stable configurations,
but other states can’t be kept from chaotic motion. More complicated real-
world examples include some underactuated walkers Hurst et al. (2007) and
many electromagnetically actuated systems Shoer & Peck (2013) including the
inspection spacecraft described in subsection 2.2.

2.1 General System Description

Co-generation targets systems with parameterized designs, D(p) where p are
mutable and numerical parameters of the system. In the thought experiment,
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p are the length and mass of each pendulum link. These parameters are either
discrete (number of links) or continuous (properties of the links.) D, along with
fixed parameters and information about the environment, must have enough
information to numerically model the system.
D and the independent environment variables1 specify the nonlinear dynam-

ics of the system with a state x and control input u.

ẋ = f(x,u) (1)

A controller C defines a set of control actions u(t,x) that will drive the system
to a stable goal state, x G. The total volume of the regions of attraction in C
define V(C) - the volume of state space that C can successfully drive to some
x G. While V(C) has little meaning in an absolute sense, it provides a metric
to compare different D based on how much state space they can explore before
”wandering” into a possibly unrecoverable state.

In general, the co-generation problem is to find a D and C that create a sys-
tem that exhibits some desired performance. In the toy example, performance
is based on possible joint configurations and in the motivating example, perfor-
mance is based on controllable rigid-body configurations. The larger the set of
achievable configurations, the better the performance.

Traditional human-intuited or optimization-based design and controllers fall
short when there exists a combination of:

• x is high dimensional.

• p is high dimensional.

• f(x,u) is nonlinear and not analytically solvable.

• u saturates, especially if umax and umin are functions of x.

• The system cannot be controlled over all of state space, regardless of the
design.

• Unknown goal specifications and a large number of possible goal points.

The dimensionality of p and x that constitute ‘high dimensional’ varies based
on the behavior of the other criteria. High dimensional systems with slowly
changing dynamics and state-independent actuators are often still amenable to
optimization-based design. At some dimension, human intuition breaks down
and optimizers fail to converge. In these cases, a probabilistic approach to both
the design and control may be needed.

1 Independent environment variables can be fixed design parameters (like a fixed mass) or
external factors that affect the dynamics, like an external magnetic field
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2.2 Motivating System Description

The real-world system motivating this approach is a robotic inspection space-
craft using induction couplers for contactless manipulation. Induction couplers
create actuation forces from the interaction between time-varying magnetic
fields of spinning magnets or oscillating electromagnets and induced currents
in conductive targets. These forces allow a spacecraft to manipulate a target
and locomote itself without physical contact at distances of several centimeters.

Induction couplers enable unique capabilities, but also exhibit the behaviors
that make traditional design-and-then-control difficult. The rigid body system
itself has a 12 dimensional state space. Each actuator could be placed any-
where on the inspector, with any orientation - six parameters per actuator. The
actuation forces both increase nonlinearly and change direction with the con-
trol input. The actuation force’s direction and magnitude also depend on the
distance and relative orientation between the surface and the actuator. With
enough distance, the actuators become effectively useless which can cause the
system to become uncontrollable if too many actuators are too far from the
target. Finally, a robotic inspector needs the ability to stabilize itself in many
different configurations. With this complexity and number of free parameters,
creating a design without considering its associated controller could lead to sys-
tems with poor performance. The actuators’ nonlinear, state-dependent, and
saturated response make it hard to intuit a design that can lead to a useful
controller. Algorithmic co-generation is a natural solution.

This paper contributes:

• A new probabilistic algorithm for simultaneous design and control (section
3.)

• A comparison showing that the algorithm converges on a known optimal
solution (section 5.1.)

• A demonstration that the algorithm beats human design in the motivating
problem (section 5.2.)

3 Algorithm

The goal of the algorithm is to find both a design, D, and controller, C, that
together maximize the volume of state space over which the controller can suc-
cessfully stabilize the system. This controller is composed of a set of local
controllers associated with both a stable point x and a a region of attraction
of the gains about x. This RoA is represented by an ellipsoidal level set ρ.
The closed-loop system will converge to x from any point within ρ. Since all
x in C are stable points of the system, any state that lies within any ρ can be
successfully stabilized. Thus, the total volume of state space covered by all the
ρ in C, V(C), is a conservative proxy for the amount of state space the system
can visit and successfully return to a stable point.
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The algorithm for finding the D and C that maximizes V(C) is shown in
Algorithm 1.

Algorithm 1 Control-Volume Based Design Algorithm

1: C.init(NULL)
2: best V ⇐ 0
3: best design ⇐ NULL
4: while no convergence do
5: D ⇐ new parameterized design
6: for i = 1 to max controllers do
7: x ⇐ random state ∈ stable states
8: [A,B] ⇐ linearization of f(x,u) around x
9: [K,S] ⇐ LQR(A,B,Q,R)

10: ρ⇐ level set for the closed loop system using K about x
11: C.add-node(x,K,S, ρ)
12: end for
13: for all node N in C do
14: if ρi ∩ ρ 6= ∅ then
15: C.add-edge(ρi, ρ)
16: end if
17: end for
18: V = Volume(C)
19: if V > best V then
20: best V ⇐ V
21: best design ⇐ D
22: end if
23: end while

3.1 Algorithm Execution

While the algorithm hasn’t exceeded a total number of loops set by max iterations

and improvements in the evaluation metric haven’t stalled (the number of loops
without a better D hasn’t exceeded max no improve), the algorithm loops be-
tween design creation and controller synthesis. First, a new design D sets the
parameters of the system. D and the independent environment variables define
a new dynamical system that needs a controller.

The algorithm populates the controller by first picking a state from the
set of stable states, defined either explicitly (with a pre-defined range for a
continuous set of points) or implicitly (with a function that checks the stability
of each sampled point.) It then linearizes the system about that state and
finds the LQR gains for that linearized system. Sum-of-squares finds a verified
polynomial level set ρ that is added to the controller along with the LQR gains.
This process proceeds until it meets a termination condition like reaching some
maximum number of gain nodes.
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Once the controller is fully populated with gain nodes, a graph is created
by generating an edge between gain nodes. A conservative connection policy
will connect only two nodes N1 and N2 with x1 and x2 such that x1 ∈ ρ2 and
x2 ∈ ρ1. The total volume filled by the RoAs in the controller is compared
against the largest control volume so far. If the volume of the new controller is
larger, its volume becomes the largest control volume with C and its associated
D becoming the best controller and best design respectively.

In the end, the algorithm produces a design D and an accompanying con-
troller C that maximize stabalizable volume.

3.2 Controller Execution

A possible control policy using C is as follows:
Start with an initial state x0 and a target state xG. Find two gain nodes, N0

and NG such that whose level sets encompass x0 and xG respectively. Perform
a graph search to connect the two nodes and generate a series of waypoint nodes
N1 ... Nk. Assuming the connection policy in section 3.1, while inside ρi the
system should use Ki until it is inside ρi+1 and then switch to Ki+1, effectively
“hopping” between nodes. This policy provides stability guarantees because the
system is always driving itself towards a stable point while within the RoA of
that point and using the gains associated with that RoA. Figure 3 shows the
RoAs and associated path for a simple example.

The system can then use other path planners to reach stable states near
the node states. One approach is to generate a new sequence of nodes with
overlapping RoAs that lead to the goal state, like a fractal of the larger map.
This approach assumes smooth dynamics, but the RoA of the node state already
makes that assumption.

This control policy is not optimal and leaves significant room for improve-
ment because moving this way gives no performance guarantees beyond stability.
It is meant to illustrate how the results of the co-generation algorithm can be
incorporated into a control policy that allows the system to traverse volume of
C without additional controller synthesis. Further discussion of control policies
is in section 6.2.

4 Implementation Details

The number of gain nodes necessary to allow controllers to cover possibly con-
trollable states varies with the smoothness of the dynamics. V(C) can converge
with a smaller max controllers when the gradients of the dynamics are small
and the RoA for individual nodes are large compared to the size of the state
space. The user needs to pick the parameters built into the controllers unless
they are included as design parameters. In our example the matrices Q and R
that generate LQR gains are built-in controller parameters.

Different regions of state-space may be more important than others. The
algorithm can incorporate this information in two ways. One option is to assign
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from node 1 to node 5.

Fig. 3

more weight towards picking node centers in a region of interest during the
sampling step. Another option is adding weight to points in the region of interest
during the integration step. Our implementation assigns the same weight to each
state.

Several different methods can find a RoA for each gain node. Sum-of-squares
is the most widely used and toolboxes like SPOT Megretski (2010) simplify the
process of generating and manipulating Lyapunov functions. However, SoS
does not scale well to high dimensions. Alternatives include simulation-based
approaches, DSOS programming and SDSOS programming Ahmadi & Parrilo
(2014).

Numerical methods are necessary to find the volume of each controller be-
cause there is no good way to find the volume covered by several overlapping
ellipses analytically. We use Monte Carlo integration because of the high dimen-
sionality. In our implementation, a set of points from the Halton sequence is
generated across the convex hull of the controller and each point checks whether
it is contained in any RoA. The Halton sequence’s deterministic sampling points
allow volumes to be reliably compared while still exhibiting the large dispersion
needed to capture high-dimensional volumes. There are many increasingly fancy
ways to implement Monte Carlo integrators for more accuracy.

The samples from the integration step also populate the edges of the con-
troller’s graph. Each point is already checking whether it is in any RoA, which
in the worst case checks each RoA in the controller. To populate the graph,
the sample points check whether they are in each RoA, keep track of the RoAs
containing them, and then add an edge between all gain nodes associated with
those RoAs.
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5 Experiments

We demonstrate the co-generation algorithm with two systems: a double pendu-
lum and a robotic inspection spacecraft using novel actuators . The pendulum
is a simple example demonstrating that the algorithm converges on a known op-
timal design. The spacecraft system shows how the co-generation algorithm can
generate designs for systems that are intractable for traditional design methods.
The generated spacecraft design outperforms the intuitive symmetric design of
the type that often outperforms generated designs.

The success criteria for the co-generation algorithm are:

1. Generate a design that can be controlled in a quantifiable volume of state
space.

2. Generate a design that is as good or better a intuition-driven human
design.

Fig. 4: The pendulum. Co-
generation maximizes
the stable states achiev-
able by limited τ1 and
τ2.

Without criterion 1 the algorithm would
be completely useless. Real usefulness comes
from criterion 2. Many algorithmic designs
succeed at criterion 1 but fail at 2. The hu-
man design used as a baseline exhibits the
symmetries and even distribution of struts
that would intuitively allow the system to sta-
bilize itself in the largest possible state-space
volume.

5.1 Pendulum

The double pendulum in figure 4 is a simple
nonlinear system with four states, two actu-
ators - one at each joint, and an analytical
equation of motion. Its simplicity means that
its amenable to both hand design and other
co-generation methods. Using probabilistc
co-generation to find a design and controller
is overkill. However, the double pendulum
is a good baseline system that demonstrates
how probabilistic co-generation will come to
the same conclusions as other methods, given enough time.

Equation 2 describes the pendulum’s dynamics. For abbreviation, α =
m1l

2
1 + m2(l21 + l22), β = m2l

2
2, δ = m2l

2
2, ci = cos(θi), si = sin(θi), cij =
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cos(θi + θj)[
α+ 2βc2 δ + βc2
δ + βc2 δ

] [
θ̈1
θ̈2

]
+

[
−βs2θ̇2 −βs2(θ̇1 + θ̇2)

βs2θ̇1 0

] [
θ̇1
θ̇2

]
+[

m1gl1c1 +m2g(l1c1 + l2c12)
m2gl2c12

]
=

[
τ1
τ2

]
(2)

Each of the two actuators saturates at τi = umax. These two limited actua-
tors create a non-linear system with four continuous sets of stable points and a
state-space that is largely unstable.

The double pendulum has a simple design space: the lengths and masses of
its arms, li and mi. The arm mass/length design space has a clear optimum
design using the controllable volume metric: minimizing the masses and lengths
of the arms gives the actuators maximum control over the pendulum’s joint
angles. Optimization via MATLAB’s fmincon confirms the optimality of this
design, making it the clear choice as an experimental baseline. The volume of
the interconnected RoAs for this design provides a baseline controllable volume.

In figure 5, the co-generation algorithm generates designs using increas-
ing values of max iterations. The generated design’s stabilizable volume ap-
proaches the baseline value as max iterations increases, demonstrating con-
vergence on the optimal design.
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Fig. 5: The controllable volume of generated designs converges on the control-
lable volume of the optimal design as the algorithm’s iterations increase.
The volumes are normalized by the controllable volume of the optimal
design.

5.2 Spacecraft

The other test system, an inspection spacecraft, is a complex system that uses
novel electromagnetic actuators to interact with a conductive target without
contact. The control forces from these actuators are nonlinear, position de-
pendent, and saturate. Coupled with the spacecraft’s rigid-body dynamics, the
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actuators create a system that exhibits all the criteria listed in section 2. This
complexity causes traditional methods to fall short and motivates the creation
of the co-generation algorithm.

The experimental model in figure 1 is a simplified version of a real system
currently in development Reinhardt & Peck (2014). The model spacecraft is
a rigid body with three degrees of freedom (two translational, one rotational.)
Struts attach the actuators to the main mass of the system so that the actua-
tors’ positions aren’t constrained by the inspector’s body geometry. The angles
between the spacecraft body and the four struts are the free parameters, p,
specified during the design of the system. The length of the struts and mass
of the spacecraft are fixed parameters, while the position of the surface (that
magnetically interacts with the actuators) and dynamics of the actuators are
external environmental variables.

Optimization methods fail to generate designs and controllers for this sys-
tem, even with a smaller set of parameters than the real system. Both fmincon

and SNOPT can’t provide a baseline design because they fail to converge on solu-
tions. This failure was what drove our new method in the first place. Without
optimized designs, a system designer would need to turn to their intuition. The
human baseline is this intuitive design that places struts symmetrically spanning
the space of possible positions, which ideally would make the system stabilizable
in as many configurations as possible.

The results in figure 6 show the design and a projection of the control volume
for both the human and algorithmically generated design. The designs (subfig-
ures 6a and 6b) show the body, strut positions, and target surface. Subfigures 6c
and 6d) show 2-d projections of the regions of attraction onto the x-y plane. The
baseline design has a stabilizable volume Vh = 4.8E − 11. After 65 iterations,
the algorithm produced a design with a stabilizable volume Va = 1.8E − 10.
The ratio Va

Vh
= 3.75 shows that the algorithm succeeds on both criteria 1 and

2.
Closer inspection of the resulting design yields unexpected insight into the

system as well. The algorithm’s design consistently places a strut pointed
straight down; its actuator as close to the surface as possible. The state-
dependence of the actuators explains this placement because their effectiveness
decreases with r4 from the surface. However, there is a trade-off between this
arrangement and the human-designed baseline which places actuators farther
out to the side to provide more control when the inspector rotates. Post hoc
this trade-off is obvious and could be analyzed with traditional methods. How-
ever, the size of the design space and complexity of the dynamics completely
obscures that clarity during the initial design process. This insight is specific
to the particular model, but it demonstrates how the co-generation algorithm
can lead to insights about complex systems. The co-generation leads to both
an expanded control volume and a design insight that would have been lost in
a traditional design-and-then-controller-synthesis process.
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Fig. 6: Algorithmic design and controllers (left) and human design and con-
trollers (right.) The system comprises a main body attached to a set of
nonlinear actuators by struts. The co-generation algorithm uses the an-
gles of these struts as the free parameters (p). In an unexpected result,
the algorithm showed that symmetry between the four actuators led to
less controllable area than a design with a central actuator.

6 Discussion

The algorithm presented here is meant as a proof-of-concept for algorithmic
design based on a controller metric. There are many possible extensions and
areas for future work both in the design and controller halves.

6.1 Design

There are multiple methods for generating a design at each iteration. The
implementation in this paper uses a naive approach: a new set of parameters is
selected randomly each iteration. Two other possibilities for design generation
are genetic algorithms (GA) and optimization. GAs are traditionally used for
algorithmic design generation and would be a good fit. However, they require
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significant tuning and without it, don’t outperform random generation. An
optimization method using the control volume as a cost function could replace
the entire co-generation algorithm if the number of parameters is small and the
dynamics smoothly change as parameters those parameters change. Neither of
these requirements are guaranteed, especially if some parameters can change
discretely (three vs. four struts.)

6.2 Control

New center points for new gain nodes can be generated in different ways to max-
imize coverage or connections between nodes. Selecting only new center points
that fall within an existing RoA will maximize connections between nodes; the
new node’s RoA is guaranteed to intersect the existing RoA, forming a connec-
tion. Selecting gain node centers that are already within the RoA of another
node guarantees that the control policy described in section 3.2 will succeed.
Alternately, selecting only new center points that do not fall within, an existing
region will increase coverage and decrease redundant controllers for the same
points. Dynamics-based distance metrics can also be used to pick new center
points that are ’dynamically close’ to existing regions, leading to new regions
that expand coverage and are likely to connect to others Perez et al. (2012);
Glassman & Tedrake (2010). V(C) need not necessarily be composed of many
LQR regions of attraction. If the dynamics are analytically tractable, SoS can
find a single parameterized RoA for the entire range of goal states Majumdar
(2012). This single RoA reduces computation significantly because it requires
only one verification but it doesn’t lead directly to controller synthesis as a
graph of connected gain nodes.

Time invariant LQR (TILQR) controllers must be centered around a stable
point. This restricts C to a volume of state space immediately around the set
of goal points while using TILQR gains. Limiting the controller to TILQR
gains limits V(C), trading volume for consistency. C could expand farther into
state space by including Time-Varying LQR (TVLQR) gains through methods
like LQR trees Tedrake et al. (2010). The trees’ TVLQR controllers would
stabilize the system to pre-computed trajectories that lead to stable points or
other time-varying LQR controllers. LQR trees have verified RoAsthat can add
to the V(C) design metric. The downside of the expanded control volume is
that LQR trees depend on accurate trajectory optimization which can fail to
converge for complicated systems, especially when the specific dynamics are
unknown a priori because of the design’s mutability.

The final control policy need not be limited to jumping between the lqr gains
in C. Several different robust on-line planners exist, including Model-Predictive
Control (MPC) and LQR trees. These will outperform LQR gain hopping most
of the time. When using these controllers, C remains valuable because it can
provide constraints for MPC that prevent it from driving the system to an
uncontrollable state. Additionally, the gain nodes could provide goal regions for
LQR tree generation.
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7 Summary and Conclusion

Designs for complex dynamical systems often require decisions that can benefit
from a tight loop between the design parameters and the control system instead
of the traditional approach: design first, controller later. This paper presents
an approach to algorithmic design that uses stablizable volume of state space
as a metric. This volume acts as a conservative metric for the robustness of the
generated controller and by proxy, the quality of the design. The approach is
appropriate for high-dimensional systems with several parameters thanks to its
probabilistic nature.
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